ContohSoal dan Alternatif Penyelesaian Sistem Pertidaksamaan Linear-Kuadrat. Gambarlah grafik himpunan penyelesaian dari sistem pertidaksamaan linear-kuadrat berikut! Alternatif Penyelesaian. y=-x^2+x+6 merupakan parabola dengan a=-1,b=1, dan c=6. Daerah penyelesaian sistem pertidaksamaannya sebagai berikut. PembahasanPerhatikan bahwa untuk memperoleh daerah hasil akan digunakan uji titik 0 , 0 2 x + y 2 β‹… 0 + 0 0 ​ ≀ ≀ ≀ ​ 24 24 24 benar ​ karena hasilnya benar, maka daerah penyelesaian memuat titik 0 , 0 . x + 2 y 0 + 2 β‹… 0 0 ​ β‰₯ β‰₯ β‰₯ ​ 12 12 12 salah ​ karena hasilnya salah maka daerah penyelesaian tidak memuat titik 0 , 0 . x βˆ’ y 0 βˆ’ 0 0 ​ β‰₯ β‰₯ β‰₯ ​ βˆ’ 2 βˆ’ 2 βˆ’ 2 benar ​ karena hasilnya benar, maka daerah penyelesaian memuat titik 0 , 0 . Oleh karena itu, daerah penyelesaian dari pertidaksamaan di atas adalah daerah yang diarsir berikut. Dengan demikian, yangmerupakan himpunan penyelesaian sistem pertidaksamaan di atas adalahdaerah bahwa untuk memperoleh daerah hasil akan digunakan uji titik karena hasilnya benar, maka daerah penyelesaian memuat titik . karena hasilnya salah maka daerah penyelesaian tidak memuat titik . karena hasilnya benar, maka daerah penyelesaian memuat titik . Oleh karena itu, daerah penyelesaian dari pertidaksamaan di atas adalah daerah yang diarsir berikut. Dengan demikian, yang merupakan himpunan penyelesaian sistem pertidaksamaan di atas adalah daerah II.
Secaraumum, penyelesaian atau himpunan penyelesaian (HP) pertidaksamaan kuadrat dengan menggunakan grafik fungsi kuadrat dapat ditentukan melalui langkah-langkah berikut ini. Langkah #1. Gambarlah sketsa grafik fungsi kuadrat f(x) = ax2 + bx + c atau parabola y = ax2 + bx + c. Lalu carilah titik-titik potong dengan sumbu-X apabila ada.
Kelas 11 SMAProgram LinearSistem Pertidaksamaan Linear Dua VariabelGambarlah himpunan penyelesaian dari sistem-sistem pertidaksamaan berikut! a. x>=0; y>=0; x+2y=0; y>=3; 3x+y>=12Sistem Pertidaksamaan Linear Dua VariabelProgram LinearALJABARMatematikaRekomendasi video solusi lainnya0124Pedagang teh mempunyai lemari yang hanya cukup ditempati ...0438Tentukan sistem pertidaksamaan dari himpunan penyelesaian...0404Tentukan sistem pertidaksamaan linear untuk daerah yang d...0243Perhatikan daerah penyelesaian dari suatu sistem pertidak...Teks videoLogo friend pada saat ini kita diminta untuk menggambarkan himpunan penyelesaian dari sistem-sistem pertidaksamaan untuk yang soal Aini itu X lebih dari nol y lebih dari nol dan x + 2 Y kurang dari sama dengan 8 Nah kita cari dulu di sini x + 2 Y kurang dari sama dengan 8 Bagaimana gambarnya nah disini kita Ubah menjadi persamaan terlebih dahulu menjadi x + 2 y = 8 kemudian kita akan cari titik ketika x = 0 dan y = 0 ketika = 0 kita masukkan yaitu 0 + 2 y = 8 sehingga Y nya itu 8 / 2 adalah 4 kemudian saat ini sama dengan nol berarti x + 0 = 8 yaitu x-nya = 8. Nah disini kita sudah dapat kan dua titik yaitu 0,4 dan 8kita gambar pada koordinat x dan y di sini 0,4 dan 8,0 kita tandai dengan titik dan kita tarik garis nya sebelum itu karena pada soal itu pertidaksamaannya ada sama dengannya maka menggunakan garis tegas sehingga disini kita tarik garis tegas kemudian kita akan melakukan uji pada daerah 0,0 di sini kita masukkan 0,0 kedalam x + 2 Y kurang dari sama dengan 8 sehingga 00 kurang dari sama dengan 80 kurang dari sama dengan 8 adalah pernyataan yang benar maka 0,0 ini adalah daerah penyelesaian untuk garis yang ini sehingga kita arsir di sini bukan daerah penyelesaian nya Kemudian pada soal itu juga adalebih dari 0 dan Y lebih dari nol maka kita arsir yang bukan daerah penyelesaian yaitu ketika X dan y nya itu kurang dari nol disini sehingga daerah himpunan penyelesaian nya itu adalah yang bersih Kemudian untuk soal yang dari sini kita fokus pada 3 x + y lebih dari sama dengan 12 ubah ke persamaan 3 x + y kita akan cari titik ketika x = 0 dan Y = B dengan 0 berarti 0 + y = 1212 kemudian saat y sama dengan nol berarti 3 x + 0 = 12 maka x = 4 nah disini kita dapatkan titik 0,2 dan 4,0 kita akan digambarkan pada koordinat x dan y nya kita tarik di sini garis tegas sama seperti yang aya Karena ada sama dengannya pada pertidaksamaannya kemudian kita lakukan uji pada daerah 0,0 kita masukkan ke 3 x + 2 y lebih dari sama dengan 12 hasilnya itu 0 lebih dari sama dengan 12 adalah pernyataan yang salah sehingga 0,0 bukan daerah penyelesaian di sini kita arsir yang bukan daerah penyelesaian Kemudian pada soal B itu juga ada y lebih dari sama dengan 3 jika kita ubah ke persamaan berarti y = 3 kita tarik garis tiga pada G di sini kemudian kita juga akan melakukan uji pada titik 0,0 berarti 0 lebih dari sama dengan 3 adalah pernyataan yang salah sehingga daerah 0,0 atau daerah dibawah garis y = 3 adalah bukan penyelesaian kita arsir selanjutnyalebih dari sama dengan nol pada soal B berarti kita arsir daerah yang bukan penyelesaian nya adalah x kurang dari 0 di sini sehingga daerah penyelesaian untuk yang ini adalah yang bersih sampai jumpa di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Perhatikanpertidaksamaan berikut: 4x+5y
MatematikaALJABAR Kelas 11 SMAProgram LinearPertidaksamaan Linear Dua VariabelGambarlah himpunan penyelesaian dari sistem pertidaksamaan berikut x, y e R. x=4, dan x+y>=3Pertidaksamaan Linear Dua VariabelProgram LinearALJABARMatematikaRekomendasi video solusi lainnya0317Bu Ayu membuat dua jenis kue, yaitu bolu dan cubit. Dalam...Bu Ayu membuat dua jenis kue, yaitu bolu dan cubit. Dalam...0252Seorang pedagang membeli sepatu tidak dari 25 pasang untu...Seorang pedagang membeli sepatu tidak dari 25 pasang untu...0238Himpunan penyelesaian sistem pertidaksamaan 5x+3y>=15, 3...Himpunan penyelesaian sistem pertidaksamaan 5x+3y>=15, 3...0223Gambarlah himpunan penyelesaian pertidaksamaan bidang Car...Gambarlah himpunan penyelesaian pertidaksamaan bidang Car...
Sehingga untuk x = 0 menghasilkan nilai negatif yang berarti daerah yang memuat angka nol memiliki daerah yang bernilai negatif. Pertidaksamaan kuadrat yang diberikan adalah x 2 - x - 12 = 0, artinya himpunan penyelesaian dipenuhi untuk daerah yang bernilai positif. Jadi himpunan penyelesaiannya adalah x ≀ - 3 atau x β‰₯ 4.
August 09, 2019 4 comments Gambarlah himpunan penyelesaian dari sistem-sistem pertidaksamaan berikut! a. x β‰₯ 0; y β‰₯ 3; 3x + y β‰₯ 12 b. x β‰₯ 0; y β‰₯ 0; 3x – y β‰₯ 6 c. x β‰₯ 0; y β‰₯ 0; x + 2y β‰₯ 8; 3x + y β‰₯ 9 d. 1 ≀ x ≀ 3; 0 ≀ y ≀ 8; x + y ≀ 9 Pembahasan Soal di atas bisa kita selesaikan dengan cara menggambar seperti berikut - Jangan lupa komentar & sarannya Email nanangnurulhidayat 4 comments for "Gambarlah himpunan penyelesaian dari sistem-sistem pertidaksamaan berikut! a. x β‰₯ 0; y β‰₯ 3; 3x + y β‰₯ 12" Tidak ada cara penyelesainnya/rumusnya? Sudah dianggap paham cara membuat 2 titik rumus nyaa gimana ? yang a dapet 4 darimana ?
SistemPertidaksamaan Linier Dua Variabel Sistem pertidaksamaan linear dua variabel terbentuk dari dua atau lebih pertidaksamaan linear dua variabel dengan variabel-variabel yang sama. Contoh: β€’ Gambarlah grafik himpunan penyelesaian berikut: Langkah-langkah: Gambarkan masing-masing grafik himpunan penyelesaian

ο»ΏKelas 11 SMAProgram LinearPertidaksamaan Linear Dua VariabelGambarlah himpunan penyelesaian sistem pertidaksamaan linear berikut pada bidang Cartesius. 3x+y>=9; 5x+4y=0, y>=0; x, y e Linear Dua VariabelProgram LinearALJABARMatematikaRekomendasi video solusi lainnya0317Bu Ayu membuat dua jenis kue, yaitu bolu dan cubit. Dalam...0252Seorang pedagang membeli sepatu tidak dari 25 pasang untu...0238Himpunan penyelesaian sistem pertidaksamaan 5x+3y>=15, 3...0223Gambarlah himpunan penyelesaian pertidaksamaan bidang Car...Teks videojika melihat pertanyaan seperti ini untuk menyelesaikannya ada beberapa tahapan yang perlu kita kerjakan tahapannya adalah sebagai berikut ini adalah tahapan pengerjaannya pertama kita buat persamaan garis dari pertidaksamaan yang ada di soal kemudian kita Tentukan titik potong dengan sumbu x dan sumbu y setelah mendapatkan titik potongnya kita buat garisnya setelah itu diuji coba dengan titik 0,0 pertanyaan ini terdapat beberapa pertidaksamaan untuk yang pertama adalah 3 x + y lebih besar sama dengan 9 maka persamaannya menjadi 3 x + y = 9 kita Tentukan titik potong dengan sumbu x maka y = 0 kita suka itu sih kan maka 3 x + 0 = 9 maka x adalah 9 dibagi 3 = 3 kemudian kita Tentukan titik potong dengan sumbu y maka x y = 0 kita substitusikan maka 0 + y = 9 makanya adalah 9 jadi titik potong dengan sumbu x itu adalah 3,0 sedangkan titik potong dengan sumbu y itu adalah 0,9 sekarang kita buat garisnya garis horizontal Itu adalah sebuah X dan Y vertikal itu adalah sumbu y kita Letakkan titiknya titik potong dengan sumbu x itu ada di 3,03 di sini kemudian titik potong dengan itu di 0,99 di sini kita buat garisnya ini adalah garis untuk persamaan 3 x + y = 9 kemudian kita lakukan uji titik menggunakan titik 0,0 pertidaksamaan yang kita punya itu adalah 3 x + y lebih besar sama dengan 9 kita substitusikan nilai x dan y adalah 0 maka 0 + 00 lebih besar sama dengan 9 jadi dari hasil uji titik ini didapatkan 0 lebih besar sama dengan 9 maka salah karena salah maka 0,0 bukan salah satu penyelesaian dari pertidaksamaan ini maka daerah penyelesaiannya ada di atas garis Kemudian untuk pertidaksamaan yang kedua adalah 5 x + 4 Y kurang dari sama dengan 20 maka persamaan nya menjadi 5 x + 4y = 2 B Tentukan titik potong di sumbu x maka y = 0 kita subtitusikan maka 5 x + 0 = 20 maka x y adalah 20 dibagi 5 itu empat kemudian kita Tentukan titik potong di sumbu y x nya adalah 0 kemudian kita substitusikan maka 0 + 4y = 20 maka y = 20 / 4 itu 5 jadi titik potong di sumbu x itu adalah 4,0 sedangkan titik potong di sumbu y itu adalah 0,5 sekarang kita buat garisnya titik potong disebut X itu ada di 4,04 di sini sedangkan titik potong dengan sumbu y di titik 0,5 Dimana disini sekarang kita buat garisnya? 5 x + 4 y = 20 kemudian kita lakukan uji titik menggunakan titik 0,0 pertidaksamaan nya adalah 5 x + 4 Y kurang dari = 21. Tentukan nilai x dan y adalah 0 maka 0 + 0 itu 0 kurang dari sama dengan 20 jadi dari hasil uji petik ini didekatkan 0 kurang dari sama dengan 20 maka benar karena benar maka 0,0 merupakan salah satu daerah penyelesaiannya maka daerah penyelesaian nya adalah yang di bawah garis Kemudian untuk menentukan daerah himpunan penyelesaian nya kita mencari irisan dari arsiran yang sudah kita dapat dari dua persamaan tadi perlu diperhatikan x nya harus lebih besar sama dengan nol nya juga harus lebih besar sama dengan nol maka daerah himpunan penyelesaian nya akan berada di kanan atas di mana nilai x nya ada juga positif maka berdasarkan hasil dari arsiran tadi irisannya itu adalah yang maka ini merupakan daerah himpunan penyelesaian dari pertidaksamaan yang ada di soalnya sampai jumpa di Pertandingan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

HimpunanPenyelesaian Sistem Pertidaksamaan Linear Dua berikut adalah contohnya 2x 3y gt 6 4x y lt 9 Berbeda dengan penyelesaian dari persamaan linear dua himpunan penyelesaian dari 3 sistem persamaan linear dua variabel dari pernyataan himpunan penyelesaian dari pertidaksamaan 2x Γ’Λ†' 1 Ò‰€ 3x 1 dengan x ' 'Pertidaksamaan Linear Gambarlah himpunan penyelesaian dari sistem-sistem pertidaksamaan berikut! a. x β‰₯ 0; y β‰₯ 0; x + 2y ≀ 8 b. x β‰₯ 0; y β‰₯ 0; 3x + y β‰₯ 12 c. 1 ≀ x ≀ 3; 0 ≀ y ≀ 8; x + y ≀ 9 d. x β‰₯ 0; y β‰₯ 0; x + 2y β‰₯ 8; 3x + y β‰₯ 9 Jawab - Jangan lupa komentar & sarannya Email nanangnurulhidayat I1zlN.
  • ycbf1971ab.pages.dev/553
  • ycbf1971ab.pages.dev/481
  • ycbf1971ab.pages.dev/231
  • ycbf1971ab.pages.dev/196
  • ycbf1971ab.pages.dev/519
  • ycbf1971ab.pages.dev/255
  • ycbf1971ab.pages.dev/244
  • ycbf1971ab.pages.dev/340
  • gambarlah himpunan penyelesaian dari sistem sistem pertidaksamaan berikut